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szymon.chlebowski@amu.edu.pl

Abstract. We propose a new approach to modelling abductive reason-
ing by means of an abductive question-answer system. We introduce the
concept of an abductive question which is the starting point of abductive
reasoning. The result of applying the question processing procedure is a
question, which is simpler than the initial one. AQAS generates abduc-
tive hypotheses that fulfil certain criteria in one step, i.e. processes of
generation and evaluation of abductive hypotheses are integrated.
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Introduction

The general schema of abductive reasoning could be described as follows: given
the known rule if H, then A and an observation of A, infer H [15]. In other
words, we can say that products of abductive procedures serve as a filler of the
cognitive gap when some puzzling phenomenon is observed [7]. These properties
account for the fact that abductive reasoning is used to solve problems in science
(e.g. explanation of new observations), real life (e.g. diagnosis in medicine), and
also in fiction (e.g. detective Sherlock Holmes) [12,15,16,18,19].

There are abductive procedures designed for Classical Propositional Calculus
(e.g. [1]), other propositional logics (e.g. [13]) and first-order logic (e.g. [14],
[9]). Different kinds of approaches to the problem use different proof methods
for abductive procedures (for example [1] used analytic tableaux, [13] sequent
calculi and [14] proof method of adaptive logics).

The aim of this article is to propose a model of abductive reasoning based on
logic of questions. We interpret the abductive problem as an abductive question:
what should be added to the knowledge base Γ in order to be able to derive a fact
ϕ?, where ϕ is not derivable from Γ . Our proposal is based on a decomposition
of the initial question an agent asks himself when he encounters an abductive
problem. Therefore Wísniewski’s method of Socratic Proofs (see for example
[21]) is being used as a main proof theoretical mechanism. It is a tool developed
on the grounds of Wísniewski’s Inferential Erotetic Logic (IEL) (see [23,22]).



In general, approaches to the problem of formal specification of the abductive
reasoning may differ in many respects and, in our opinion, one of the most
interesting features of these procedures pertains to the relation between the
generation and evaluation of abductive hypotheses. On the one hand, there are
procedures which generate a large set of abductive hypotheses and then select
‘good’ hypotheses from this set, i.e. hypotheses which fulfil certain criteria [1,10].
On the other hand, one may think of abductive reasoning in such a way that
the creation and evaluation of hypotheses are strongly intertwined: only those
hypotheses are generated which are permitted given a certain set of criteria. The
latter seems to us more natural. In the real-life as well as in scientific reasoning
people do not waste time on the creation of hypotheses that may or may not be
‘good’. They are interested only in ‘good’ hypotheses [12].

We consider algorithmic account of abduction with the following ingredients:
Classical Propositional Logic as a basic logic and the method of Socratic Proofs
[2,11,21] as a proof method.1 As we mentioned, we exploit the approach where
generation and evaluation of the hypotheses is conducted in one step. Our goal
here is to introduce a new model of abductive reasoning based on IEL, therefore
any detailed comparison concerning efficiency of the abductive procedures with
the existing approaches will not take place in this article2.

1 Question processing

Since in our model abductive reasoning is triggered by an abductive question,
we need some techniques enabling question processing. For that purpose we use
some concepts and tools of IEL.

1.1 Language of IEL

We use the language LCPL of Classical Propositional Logic defined as usual.
The language L?

`CPL is an object-level language in which our erotetic calculi will

1 Urbański and Wísniewski [20] proposed a mechanism which enables to obtain ab-
ductive hypotheses in the form of law-like statements. The basis of the mechanism
is similar as we use here. However, the two approaches differ when results of the
abductive procedures are concerned. What is more, Urbański and Wísniewski put it
explicitly at the beginning of their article that they will not consider problem of the
evaluation of abductive hypotheses.

2 However some remarks should be made at this point. In the well-known Abductive
Logic Programming (ALP) framework (on the propositional level) it is assumed that
the set of abductive hypotheses (the set of abducibles) is known before abductive
reasoning is triggered. Then, using integrity constraints and information from the
knowledge base it can be figured out which hypotheses are good. Moreover, abductive
hypotheses can be only of the form of atomic formulas. In AQAS the set of abductive
hypotheses is not known before the initial question is transformed and abductive
hypotheses can be literals as well as formulas of the form of implication. We think
that the novelty of our approach lays in the fact that the concept of abductive
hypothesis is defined in a more general way.



be worded. The meaningful expressions of the language L?
`CPL belong to two

disjoint sets. The first one consists of declarative well-formed formulas (d-wffs
for short). The second one is the set of erotetic well-formed formulas (e-wffs or
simply questions).

To obtain the vocabulary of L?
`CPL we add to the vocabulary of LCPL the fol-

lowing signs: ` (turnstile, intuitively stands for derivability relation in CPL), ? (a
question mark for constructing questions of L?

`CPL) and , (comma), ; (semicolon).

Definition 1. Let Γ , ∆ be finite, non-empty, sequences of formulas of LCPL.
An atomic declarative formula of L?

`CPL or sequent is of the following form:

Γ ` ∆

Definition 2. Questions of L?
`CPL have the following form:

?(Φ)

where Φ is a finite, non-empty sequence of sequents of L?
`CPL.

We use commas for separating formulas in sequents and semicolons for sep-
arating sequents in sequences. The following expressions are thus questions of
L?
`CPL: ?(¬(p→ q),¬r ` r ∧ q), ?(p,¬r ` p ∨ r ; q ∧ ¬r ` r ; p ` p).

The intuitive meaning of a sequent Γ ` ∆ is given in terms of multiple-
conclusion entailment (mc-entailment for short): if all formulas in Γ are true,
then at least one formula in ∆ is true also (in symbols: Γ ‖=CPL).

However ‘`’ is an object level expression of the language L?
`CPL that should

not be confused with the metalanguage expression ‘`CPL’ which is a syntactical
or semantical consequence relation generated by CPL or with the mc-entailment
relation ‘‖=CPL’.

If Γ ‖=CPL ∆ then we say that the sequent Γ ` ∆ of L?
`CPL is closed, otherwise

it is open. If a sequent consists of literals only, it is called an atomic sequent. If
Ψ = 〈φ1, . . . , φn〉 and for each i (1 ≤ i ≤ n), φi is an atomic sequent, then the
question ?(Ψ) is called a minimal question.

Definition 3 (Abductive question). An abductive question (or abductive
problem) has the following form:

?(Ψ)

where Ψ is a non-empty sequence of sequents such that at least one term of
Ψ is an open sequent of L?

`CPL. If Ψ = 〈φ〉 is a one-term sequence, then the
question ?(Ψ) is called simple. If φ is also an open sequent, then ?(Ψ) is an
simple abductive question. If Ψ = 〈φ1, . . . , φn〉 and for each i (1 ≤ i ≤ n),
φi is an atomic sequent, then the question ?(Ψ) is called a minimal abductive
question.

Intuitively, given an open sequent Γ ` ∆, the antecedent Γ represents
a knowledge base (such that some formulas/pieces of information can be re-
peated), which is used by an agent to ‘explain’ (derive) the data represented by
∆.



Table 1. Rules of ECPL

?(Φ;Γ, α, Γ ′ ` ∆;Ψ)

?(Φ;Γ, α1, α2, Γ
′ ` ∆;Ψ)

Lα
?(Φ;Γ ` ∆,α,∆′;Ψ)

?(Φ;Γ ` ∆,α1,∆
′;Γ ` ∆,α2,∆

′;Ψ)
Rα

?(Φ;Γ, β, Γ ′ ` ∆;Ψ)

?(Φ;Γ, β1, Γ
′ ` ∆;Γ, β2, Γ

′ ` ∆;Ψ)
Lβ

?(Φ;Γ ` ∆,β,∆′;Ψ)

?(Φ;Γ ` ∆,β1, β2,∆′;Ψ)
Rβ

?(Φ;Γ,¬¬A,Γ ′ ` ∆;Ψ)

?(Φ;Γ,A, Γ ′ ` ∆;Ψ)
L¬¬

?(Φ;Γ ` ∆,¬¬A,∆′;Ψ)

?(Φ;Γ ` ∆,A,∆′;Ψ)
R¬¬

1.2 Erotetic rules of inference

Let ?(Γ ` ∆) be an abductive question. The formulas which belong to Γ as well
as those which belong to ∆ may be complex. It seems that abductive problems
expressed by syntactically complex abductive questions are not easy to solve. In
order to obey the Erotetic Decomposition Principle, the first step in solving an
abductive problem (or, to put it differently, in answering an abductive question)
is to make this problem ‘simpler’. In the formulation of erotetic rules of inference
we make use of the α, β-notation3. These rules constitute an erotetic calculus
for CPL4. We denote it by the symbol ECPL.

A sequent of a premise question distinguished in the scheme of a rule of
ECPL is called premise sequent and sequent(s) distinguished in the conclusion is
(are) called a conclusion sequent(s) of a given rule. In a similar manner we can
define the premise formulas and conclusion formulas of a given rule (and of a
given sequent). Occasionally we will say that a conclusion formula results from
a premise formula.

Sequences of questions governed by erotetic rules of inference are Socratic
transformations.

Definition 4 (Socratic transformation). A finite sequence of questions s =
〈s1, . . . , sn〉 is a Socratic transformation (s-transformation) of the question ?(Φ)
by means of ECPL iff the following conditions hold:

1. s1 = ?(Φ).

2. si results from si−1 (where i > 1) by an application of a rule of ECPL.

An s-transformation s = 〈s1, . . . , sn〉 is said to be complete iff the last term
of s, sn, is a minimal question. A sequent φ is basic if φ is of one of the following
forms: Γ,B, Γ ′ ` ∆,B,∆′ or Γ,B, Γ ′,¬B,Γ ′′ ` ∆ or Γ ` ∆,B,∆′,¬B,∆′′.
Naturally, each basic sequent is closed.

3 α, β-notation was introduced by Smullyan in [17] to simplify metalogical considera-
tions.

4 A version of this calculus was introduced by Wísniewski in [21]. In his approach only
one formula can occur in the consequent of the sequent.



Definition 5 (Socratic proof). A Socratic proof (s-proof) of a sequent Γ ` ∆
in ECPL is a finite s-transformation s of the question ?(Γ ` ∆), such that each
constituent of the last question of s is a basic sequent.

Socratic transformation of a question ?(Γ ` ∆) is successful iff there exists
a socratic proof of Γ ` ∆. In the light of definition 3 there are no successful
s-transformations of abductive questions.

2 How to answer an abductive question

To answer an abductive question ?(Γ ` ∆) we employ the following procedure:

Step 1. Create a complete s-transformation of the question ?(Γ ` ∆); the last
question of this s-transformation is based on a sequence of sequents each
of which consists of literals only.

Step 2. Apply some abductive rules (to be introduced later on) to this last ques-
tion; each rule is local in the sense that only one sequent at a time is
active in such a rule.

Step 3. Combine the results of the applications of rules using a conjunction; the
resulting hypothesis has the form H = A1 ∧ . . . ∧ An, where each Ai
(1 ≤ i ≤ n) is the conclusion of an abductive rule.

There are several criteria of evaluation of abductive hypotheses [1,10]. To
implement those criteria we need some auxiliary notions which allow us to illus-
trate the proposed method. Let ?(Γ ` ∆) be an abductive question and H — an
answer to the initial question. An abductive hypothesis has the following form
H = A1 ∧ . . .∧An where Ai (1 ≤ i ≤ n) is a formula which closes some sequent
in the last question of an s-transformation of ?(Γ ` ∆).

We distinguish the following criteria5: 1. Consistency: Γ ∪{H} is consistent.
2. Significance: H 0CPL ∆.

2.1 Abductive rules

In this section our aim is to design rules for answering abductive questions
which produce hypotheses/answers, which are significant and consistent with
the knowledge base.

Definition 6 (Partial answer). Let Q = ?(Γ1 ` ∆1, . . . , Γn ` ∆n) be an
abductive question. Let us further assume that the sequent Γi ` ∆i (for some i,
where 1 ≤ i ≤ n) is open. Partial answer for Q is such a formula A that the
addition of A to the Γi results in Γi ` ∆i becoming a closed sequent or a sequent
which after transformation to the atomic sequent is also a closed one.

5 Similar constraints are also defined in [1, p. 74] (Aliseda describes those two criteria
as constituting the consistent and the explanatory Abductive Explanatory Styles
respectively) and as properties of the abduction for Abductive Logic Programming
in [5].



Table 2. Examples of abductive rules

?(Φ ; Θ, l, Θ′ ` Θ′′ ; Ψ)

l
R1
abd

?(Φ ; Θ, l, Θ′ ` Θ′′, k, Θ′′′ ; Ψ)

l → k
R2
abd

Definition 7 (Abductive rule). Let Q be a minimal abductive question and
A be a partial answer for Q. The premise of an abductive rule is Q and the
conclusion is A.

In this paper we propose two rules for answering abductive questions 2.
Note that the premises of abductive rules are questions (minimal abductive
questions) and conclusions are declarative formulas. Thus, abductive rules enable
a kind of inference between a question and an answer to that question. Note
also that abductive rules close an active sequent (a sequent distinguished in the
premise of a rule) in a natural way: atomic sequent is closed either by making
its antecedent contradictory, or by making some connection between antecedent
and consequent.

2.2 Restrictions for abductive rules

The proposed rules cannot be applied without some restrictions, if we want
to maintain the consistency or significance of generated abductive hypotheses.
To state those restrictions precisely we need some auxiliary notions, which are
familiar from the work of Hintikka and Fitting (see for example [6]).

Definition 8 (Downward saturated set). Let Γ be a sequence of formulas
of L∗CPL. By a downward saturated set (or Hintikka set) corresponding to a se-
quence Γ we mean a set UΓ , which fulfils the following conditions:

(i) if A is a term of Γ , then A ∈ UΓ ,
(ii) if α ∈ UΓ , then α1 ∈ UΓ and α2 ∈ UΓ ,

(iii) if β ∈ UΓ , then β1 ∈ UΓ or β2 ∈ UΓ ,
(iv) if ¬¬A ∈ UΓ , then A ∈ UΓ .
(v) nothing more belongs to UΓ except those formulas which enter UΓ on the

grounds of conditions (i)–(iv).

A Hintikka set UΓ is satisfied under a Boolean valuation v (or is consistent)
iff each element of UΓ is true under v. A Hintikka set UΓ is inconsistent iff for
every v, at least one formula in UΓ is false under v. If UΓ = ∅, then UΓ is satisfied
by each Boolean valuation (UΓ is valid).

Definition 9 (Consistency property). By a consistency property correspond-
ing to a sequence Γ we mean a finite set UcΓ = {U1

Γ , . . . ,U
n
Γ }, which contains all

Hintikka sets for Γ that do not contain complementary literals.

Lemma 1. If a non-empty sequence of formulas Γ is satisfiable, then at least
one downward saturated set corresponding to Γ belongs to consistency property
of Γ .



Lemma 2 (Hintikka’s Lemma). For arbitrary Γ , each set belonging to the
consistency property of Γ is satisfiable.

Corollary 1. A Hintikka set UΓ is inconsistent iff for some literal l, l ∈ UΓ
and l ∈ UΓ .

Definition 10 (Dual downward saturated set). Let ∆ be a sequence of
formulas of L∗CPL. By a dual downward saturated set (or dual Hintikka set)
corresponding to a sequence ∆ we mean a set W∆, which fulfils the following
conditions:

(i) if A is a term of ∆, then A ∈W∆,
(ii) if α ∈W∆, then α1 ∈W∆ or α2 ∈W∆,

(iii) if β ∈W∆, then β1 ∈W∆ and β2 ∈W∆,
(iv) if ¬¬A ∈W∆, then A ∈W∆.
(v) nothing more belongs to W∆ except those formulas which enter W∆ on

the grounds of conditions (i)–(iv).

A dual Hintikka set W∆ is d-satisfied under a Boolean valuation v iff at least
one element of W∆ is true under v. A dual Hintikka set W∆ is d-satisfied by
each classical valuation (WΓ is valid) iff there is no Boolean valuation v such
that each formula in W∆ is false under v. If W∆ = ∅, then W∆ is d-inconsistent.

Corollary 2. A dual Hintikka set W∆ is d-satisfied by each classical valuation
(W∆ is d-valid) iff for some l, l ∈W∆ and l ∈W∆.

Definition 11 (Non-validity property). By a non-validity property corre-
sponding to a sequence ∆ we mean a finite set Wnv

∆ = {W1
∆, . . . ,W

n
∆}, which

contains all dual Hintikka sets for ∆ that do not contain complementary literals.

Lemma 3 (Dual Hintikka’s Lemma). For an arbitrary ∆, each set belonging
to the non-validity property of ∆ is not d-valid.

Let us consider the rules from Definition 2 again. Let us focus on rule R1
abd

and let ?(Γ ` ∆) be the first question of a complete s-transformation which ends
with the minimal question of the following form ?(Φ ; Θ, l, Θ′ ` Θ′′ ; Ψ). We
have two kinds of restrictions which guarantee the consistency and significance
of abductive hypotheses generated by R1

abd.

Restriction 1 (Consistency restriction on R1
abd) There exists a set UΓ ∈

UcΓ such that l /∈ UΓ .

Restriction 2 (Significance restriction on R1
abd) There exists a set W∆ ∈

Wnv
∆ such that l /∈W∆.

Let us focus on rule R2
abd and let ?(Γ ` ∆) be the first question of a com-

plete s-transformation which ends with a minimal question of the following form
?(Φ ; Θ, l, Θ′ ` Θ′′ ; Ψ). We have two kinds of restrictions which guarantee the
consistency and significance of our abductive hypotheses generated by R2

abd.



Restriction 3 (Consistency restriction on R2
abd) There exists a set UΓ ∈

UcΓ such that l /∈ UΓ or k /∈ UΓ .

Restriction 4 (Significance restriction on R2
abd) There exists a set W∆ ∈

Wnv
∆ such that l /∈W∆ or k /∈W∆.

Let s = 〈Q1, . . . , Qn〉 be a complete s-transformation of the question ?(Γ `
A), φ be an active sequent of an abductive rule, l, k–active literals and UcΓ the
consistency property for Γ . The application of a given rule to φ with restriction,
with respect to l (or l and k), generates a set of Hintikka sets which are not
compatible with a given restriction. Let us call this set Uc−Γ . Now we can define
a new set Uc+Γ = UcΓ \ U

c−
Γ , which is a consistency property compatible with a

given partial answer. If Uc+Γ results from UcΓ in the case of an application of rule

R1
abd with an active literal l, then by Uc+lΓ we mean the consistency property

such that literal l is added to each element of Uc+Γ . In the case of an application

of R2
abd, the consistency property Uc+l,kΓ is the effect of adding literals l and k

to each element of Uc+Γ .
In a similar manner, we can define the set Wnv+

∆ = Wnv
∆ \W

nv−
Γ and the set

Wnv+l
Γ . In the case of an application of R2

abd things are slightly more compli-

cated. First we have to construct two sets Wnv+l
∆ and Wnv+k

∆ , and then the set

Wnv+l,k
∆ = Wnv+l

∆ ∪Wnv+k
∆ .

In order to prove a correctness of the procedure we need to modify its second
step.

Step 2∗. Apply some abductive rules to the last question with consistency (sig-
nificance) restriction; after each application of an abductive rule mod-
ify the consistency property (non-validity property) in order to make
it compatible with a given partial answer.

In the example at the end of the paper we show in details how the procedure
works. Before that we introduce the following lemmas (sometimes without proofs,
if they are trivial) and theorems proving our method to be correct.

Lemma 4. Let UΓ ∈ UcΓ be a downward saturated set corresponding to some Γ .
If a literal l /∈ UΓ , then the set UΓ ∪ {l} is consistent.

Proof. UΓ is consistent by definition of the consistency property. Let us assume
that l /∈ UΓ . If UΓ ∪ {l} is inconsistent then l ∈ UΓ ∪ {l}, which contradicts the
assumption. ut

Lemma 5. Let UΓ ∈ UcΓ be a downward saturated set corresponding to some Γ .
If l /∈ UΓ or k /∈ UΓ , then the set UΓ ∪ {l→ k} is consistent.

Theorem 1. Each abductive hypothesis generated by the procedure, where each
abductive rule is applied with a consistency restriction is consistent with the
initial knowledge base.



Proof. The proof follows from Lemma 4, Lemma 5 and from the construction of
Uc+Γ . ut

Lemma 6. Let W∆ ∈Wnv
∆ be a dual downward saturated set corresponding to

some ∆. If a literal l /∈W∆, then the set W∆ ∪ {l} is not valid.

Proof. We know that W∆ is not valid, i.e. there exists a valuation v such that
each formula in W∆ is false under v. Since l /∈W∆ we can assume that v(l) = 0.
It follows that W∆ is not valid. ut

Lemma 7. Let W∆ ∈Wnv
∆ be a dual downward saturated set corresponding to

some ∆. If l /∈W∆ or k /∈W∆, then the set W∆ ∪{l} is not valid or W∆ ∪{k}
is not valid.

Lemma 8. l 0CPL A1 ∨ . . . ∨ An (where each Ai (1 ≤ i ≤ n) is a literal) if and
only if a dual Hintikka set W = {l, A1, . . . , An} is not valid.

Proof. (→) Assume that l 0CPL A1 ∨ . . . ∨An. There exists a classical valuation
v such that v(l) = 1 and v(A1 ∨ . . . ∨ An) = 0. In this case v(l) = 0 and each
formula in W is false under v. Therefore W is not valid.
(←) Assume W is not valid. There exists a classical valuation v, such that each
formula in W is false under v. In this case v(l) = 1 and v(A1 ∨ . . . ∨ An) = 0.
Therefore l 0CPL A1 ∨ . . . ∨An. ut

Lemma 9. l → k 0CPL A1 ∨ . . . ∨ An (where each Ai (1 ≤ i ≤ n) is a literal)
if and only if a dual Hintikka set W = {l, A1, . . . , An} is not valid or W =
{k,A1, . . . , An} is not valid.

Theorem 2. Each abductive hypothesis generated by the procedure, where each
abductive rule is applied with a significance restriction, is significant.

Proof. The proof is a consequence of Lemma 6, Lemma 7 and the construction
of Wnv+

Γ . ut

Theorem 3. Each abductive hypothesis generated by the procedure, where each
abductive rule is applied with a significance and consistency restriction is signif-
icant and consistent.

Proof. The proof follows from Theorem 2 and Theorem 1. ut

Let us consider the following example. The knowledge base Γ = 〈p → (z →
q), r ∧ s〉, and ∆ = 〈r → q〉. Therefore the initial question is of the following
form: ?(p→ (z → q), r ∧ s ` r → q), and the last question of s-transformation is
of the form: ?(¬p, r, s ` ¬r, q ; ¬z, r, s ` ¬r, q ; q, r, s ` ¬r, q).

After constructing the s-transformation of our problem we have to calculate
Hintikka and dual Hintikka sets. From the knowledge base Γ = 〈p → (z →
q), r ∧ s〉 we can generate the following seven Hintikka sets and the consistency
property (UcΓ = {U1

Γ ,U
2
Γ ,U

3
Γ ,U

4
Γ ,U

5
Γ ,U

6
Γ ,U

7
Γ }):

U1
Γ = {p→ (z → q), r ∧ s, r, s,¬p, z → q,¬z, q}



U2
Γ = {p→ (z → q), r ∧ s, r, s,¬p, z → q,¬z}

U3
Γ = {p→ (z → q), r ∧ s, r, s,¬p, z → q, q}

U4
Γ = {p→ (z → q), r ∧ s, r, s,¬p}

U5
Γ = {p→ (z → q), r ∧ s, r, s, z → q,¬z, q}

U6
Γ = {p→ (z → q), r ∧ s, r, s, z → q,¬z}

U7
Γ = {p→ (z → q), r ∧ s, r, s, z → q, q}

The abductive goal is ∆ = 〈r → q〉 and we can generate the following dual
Hintikka set: W1

∆ = {r → q,¬r, q} and non-validity property: Wnv
∆ = {W1

∆}
Now, let us consider the set of possible abductive hypotheses generated by

the introduced rules. The first open sequent ¬p, r, s ` ¬r, q can be closed by
formulas which belong to the set Σ1 ∪Σ2, where:

1. Σ1 = {p,¬r,¬s} is the set of formulas generated by means of the application
of the rule R1

abd;
2. Σ2 = {¬p → ¬r, r → ¬r, s → ¬r,¬p → q, r → q, s → q} is the set of

formulas generated by means of the application of the rule R2
abd.

The second open sequent ¬z, r, s ` ¬r, q can be closed by formulas which
belong to the set Σ∗1 ∪Σ∗2 , where:

1∗. Σ∗1 = {z,¬r,¬s} is the set of formulas generated by means of the application
of the rule R1

abd;
2∗. Σ∗2 = {¬z → ¬r, r → ¬r, s → ¬r,¬z → q, r → q, s → q} is the set of

formulas generated by means of the application of the rule R2
abd.

An abductive answer to the initial question ?(p → (z → q), r ∧ s ` r → q)
is a conjunction of formulas which close all the open sequents in the minimal
abductive question (conjunction of all partial answers). In this particular case
the set of all answers has the form:

{A ∧B | A ∈ Σi, B ∈ Σ∗i , for i ∈ {1, 2}}

Note that not all of these answers would be generated, when abductive rules
are used along with restrictions. Let us look at some examples of answers. Some
of them will be consistent and significant while other will not.

(a) H = p∧z. In this case rule R1
abd has been applied to close both open sequents.

Formula p closes the first open sequent. Moreover the consistency restriction
is fulfilled: there exists a set UiΓ ∈ UcΓ such that ¬p /∈ UΓ . In fact there are
three such sets: U5

Γ , U6
Γ , U7

Γ . Formula z closes the second open sequent. The
consistency restriction is also fulfilled in this case, because there exists a set
UiΓ ∈ Uc+pΓ , namely U7+p

Γ , such that ¬z /∈ U7+p
Γ . Thus H is consistent with the

knowledge base. This hypothesis is also significant. Significance restriction is
fulfilled in the case of partial answer p, because there exists a set Wi

∆ ∈Wnv
∆

such that p /∈Wi
∆, namely W1

∆. The significance restriction is also fulfilled

for the second partial answer z, because z /∈W1+p
∆ .



(b) H = p∧(r → ¬r). This hypothesis is significant because of similar reasons as
in the previous example (a). However it is not consistent with the knowledge
base due to the fact that for each Ui+pΓ ∈ Uc+pΓ , r ∈ Ui+pΓ , which contradicts
consistency restriction on R2

abd.
(c) H = ¬r. In this case rule R1

abd has been applied to close both open sequents.
This hypothesis is neither consistent nor significant, because each UiΓ ∈ UcΓ
is such that r ∈ UΓ and each Wi

∆ ∈Wnv
∆ is such that ¬r ∈Wi

∆.

3 Summary and further work

In this article we introduced Abductive Question-Answer System for classical
propositional logic. We interpret the abductive problem as an abductive ques-
tion: what should be added to the knowledge base Γ in order to be able to derive
a fact ϕ?, where ϕ is not derivable from Γ . Firstly, (possibly) complex initial ab-
ductive question is decomposed into a minimal abductive question. Afterwards,
partial answers are generated for the minimal abductive question. The abduc-
tive hypothesis is obtained by combining all partial answers with conjunction.
If partial answers are generated along with restrictions, obtained abductive hy-
pothesis have ‘desired’ properties i.e., it is consistent with the knowledge base Γ
and ϕ is not obtainable from the abductive hypothesis alone. Therefore, AQAS
integrates generation and evaluation of abductive hypotheses.

The knowledge-based systems are better and more often described by means
of modal or paraconsistent logics. Therefore, our future work is concerned with
the application of the Abductive Question-Answer System for these logics. Our
future work will also cover the implementation of the Abductive Question-
Answer System in programming language. This will enable us to test the system
on huge datasets and compare it with solutions that already exist, such as the
one presented by Komosiński [10] or those proposed on the ground of Abductive
Logic Programming [5].
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11. Leszczyńska-Jasion, D., ‘Socratic Proofs for some Normal Modal Propositional
Logics’, Logique et Analyse 47(185–188):259–285, 2004.

12. Magnani, L., Abductive Cognition. The Epistemological and Eco-Cognitive Di-
mensions of Hypothetical Reasoning, Springer, Netherlands, doi:10.1007/s10838-
011-9146-0 2009.

13. Mayer, M. C., and Pirri, F., ‘Propositional abduction in modal logic’, Logic
Journal of IGPL 3(6):907–919, doi:10.1093/jigpal/3.6.907, 1995.

14. Meheus, J., and Batens, D., ‘A formal logic of abductive reasoning’, Logic Journal
of the IGPL 14(2):221–236, doi:10.1093/jigpal/jzk015, 2006.

15. Peirce, C. S., Collected Works, Harvard University Press, Cambridge MA, 1931–
1958.

16. Sintonen, M., ‘Reasoning to hypotheses: Where do questions come?’, Foundation
of Science 9(3):249–266, doi:10.1023/B:FODA.0000042842.55251.c1, 2004.

17. Smullyan, R. M., First-Order Logic, Springer-Verlag, Berlin, Heidelberg, New
York, 1968.

18. Thagard, P. ‘Abductive inference: From philosophical analysis to neural mecha-
nisms’, in Inductive reasoning: Cognitive, mathematical, and neuroscientific ap-
proaches, A. Feeney and E. Heit, Eds. Cambridge University Press, Cambridge,
226–247, doi:10.1017/CBO9780511619304.010, 2007.
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