Abductive Question-Answer System (AQAS) for Classical Propositional Logic

Szymon Chlebowski

Reasoning 2022/2023

April 21, 2023

Outline

1) Abductive reasoning

2 Analytic Tableaux
(3) Properties of abductive hypotheses

4 Abductive Question-Answer System

Abductive reasoning

Abductive reasoning - Peirce scheme

The surprising fact, C , is observed.
But if A were true, C would be a matter of course.
Hence, there is reason to suspect that A is true. \therefore

The street is wet.
If it rained then the streets would be wet.
It rained. \therefore
But maybe the snow melted...

Abductive reasoning - an algorithmic point of view

(1) A knowledge base Γ;
a phenomenon ϕ, which is unattainable from Γ.

Abductive reasoning - an algorithmic point of view

(1) A knowledge base Γ; a phenomenon ϕ, which is unattainable from Γ.
2) H - an abductive hypothesis;
ϕ can be computed/derived from Γ^{\prime} which is equal to Γ augmented with H i.e., $\Gamma \cup\{H\} \models \phi$.

Abduction from an algorithmic point of view

There are four ingredients of the algorithmic account of abduction:
(1) A basic logic (which determines the language of specification of A, H and Γ).

Abduction from an algorithmic point of view

There are four ingredients of the algorithmic account of abduction:
(1) A basic logic (which determines the language of specification of A, H and Γ).
classical propositional logic/modal logics/paraconsistent logics

Abduction from an algorithmic point of view

There are four ingredients of the algorithmic account of abduction:
(1) A basic logic (which determines the language of specification of A, H and Γ).
classical propositional logic/modal logics/paraconsistent logics
2 A proof method (which determines the exact mechanics of the procedure of generation of abducibles).

Abduction from an algorithmic point of view

There are four ingredients of the algorithmic account of abduction:
(1) A basic logic (which determines the language of specification of A, H and Γ).
classical propositional logic/modal logics/paraconsistent logics
2 A proof method (which determines the exact mechanics of the procedure of generation of abducibles).
erotetic calculus for CPL/analytic tabelaux

Abduction from an algorithmic point of view

There are four ingredients of the algorithmic account of abduction:
(1) A basic logic (which determines the language of specification of A, H and Γ).
classical propositional logic/modal logics/paraconsistent logics
2 A proof method (which determines the exact mechanics of the procedure of generation of abducibles).

erotetic calculus for CPL/analytic tabelaux

3 A hypotheses generation mechanism (which determines the way the chosen proof method is applied in order to generate abducibles).

Abduction from an algorithmic point of view

There are four ingredients of the algorithmic account of abduction:
(1) A basic logic (which determines the language of specification of A, H and Γ).
classical propositional logic/modal logics/paraconsistent logics
2 A proof method (which determines the exact mechanics of the procedure of generation of abducibles).

erotetic calculus for CPL/analytic tabelaux

3 A hypotheses generation mechanism (which determines the way the chosen proof method is applied in order to generate abducibles). question-answer rules/closing branches

Abduction from an algorithmic point of view

There are four ingredients of the algorithmic account of abduction:
(1) A basic logic (which determines the language of specification of A, H and Γ).
classical propositional logic/modal logics/paraconsistent logics
2 A proof method (which determines the exact mechanics of the procedure of generation of abducibles).

erotetic calculus for CPL/analytic tabelaux

3 A hypotheses generation mechanism (which determines the way the chosen proof method is applied in order to generate abducibles). question-answer rules/closing branches
(4) An implementation of criteria for comparative evaluation of different abducibles.

Abduction from an algorithmic point of view

There are four ingredients of the algorithmic account of abduction:
(1) A basic logic (which determines the language of specification of A, H and Γ).
classical propositional logic/modal logics/paraconsistent logics
2 A proof method (which determines the exact mechanics of the procedure of generation of abducibles).

erotetic calculus for CPL/analytic tabelaux

3 A hypotheses generation mechanism (which determines the way the chosen proof method is applied in order to generate abducibles). question-answer rules/closing branches
(4) An implementation of criteria for comparative evaluation of different abducibles.

Hintikka sets and dual Hintikka sets/...

Analytic Tableaux

α / β - formulas

α	α_{1}	α_{2}	β	β_{1}	β_{2}
$A \wedge B$	A	B	$\neg(A \wedge B)$	$\neg A$	$\neg B$
$\neg(A \vee B)$	$\neg A$	$\neg B$	$A \vee B$	A	B
$\neg(A \rightarrow B)$	A	$\neg B$	$A \rightarrow B$	$\neg A$	B

Rules

Example

Let $\Gamma=\{p \rightarrow(z \rightarrow q), r \wedge s\}$ and $A=r \rightarrow q$.

Hypotheses: $p \wedge z, p \wedge q, q, \neg r, \ldots$

Example

$$
\text { Let } \Gamma=\{p \rightarrow(z \rightarrow q), r \wedge s\} \text { and } A=r \rightarrow q
$$

$$
\begin{aligned}
& p \rightarrow(z \rightarrow q) \\
& r \wedge s \\
& \neg(r \rightarrow q) \\
& r
\end{aligned}
$$

$$
\begin{aligned}
& \neg \begin{array}{r}
q \\
x
\end{array}
\end{aligned}
$$

Hypotheses: $p \wedge z, p \wedge q, q, \neg r, \ldots$
Which of them are good?

Properties of abductive hypotheses

Properties of abductive hypotheses

「 = knowledge base, $A=$ abductive goal, $H=$ hypothesis

- consistency: $\Gamma \cup\{H\}$ is consistent;
- significance: $H \nvdash A$;
- complexity: simpler hypotheses are better;
- minimality: weaker hypotheses vs stronger ones - if p is good abductive hypothesis, then $p \wedge q$ seems to strong.

Exercises

Find abductive hypotheses for the following problems. What properties do they have?
(1) $\Gamma=\{q \vee r, \neg q\}, A=s$

2 $\Gamma=\{p \rightarrow q, q \rightarrow r, r \rightarrow s\}, A=s$
3 $\Gamma=\{p \rightarrow q, r \vee s\}, A=p \rightarrow s$
4 $\Gamma=\{(p \vee q) \rightarrow r, s \rightarrow p, t \rightarrow q\}, A=r$

Abductive Question-Answer System

AQAS components

Abductive Question-Answer System

Rules for questions procesing
$\frac{\text { Question }}{\text { Question }}$

Rules for answering questions
$\frac{\text { Question }}{\text { Answer }}$

Questions

Questions of $\mathcal{L}_{\text {CPL }}^{?}$

An atomic declarative formula (sequent) of $\mathcal{L}_{\mathrm{CPL}}^{?}$
$\Gamma \vdash \Delta$
where Γ and Δ are finite, non-empty, sequences of formulas of $\mathcal{L}_{\mathrm{CPL}}$.

Questions of $\mathcal{L}_{\text {CPL }}^{?}$

An atomic declarative formula (sequent) of $\mathcal{L}_{\mathrm{CPL}}^{?}$

$$
\ulcorner\vdash \Delta
$$

where Γ and Δ are finite, non-empty, sequences of formulas of $\mathcal{L}_{\mathrm{CPL}}$.

Questions of $\mathcal{L}_{\text {CPL }}^{?}$

$$
?(\Phi)
$$

where Φ is a finite, non-empty sequence of sequents of $\mathcal{L}_{\text {CPL }}^{?}$.

Rules for processing questions of $\mathbb{E}^{\mathrm{CPL}}$

$$
\begin{array}{cc}
\frac{?\left(\Phi ; \Gamma, \alpha, \Gamma^{\prime} \vdash \Delta ; \Psi\right)}{?\left(\Phi ; \Gamma, \alpha_{1}, \alpha_{2}, \Gamma^{\prime} \vdash \Delta ; \Psi\right)} \mathbf{L}_{\alpha} & \frac{?\left(\Phi ; \Gamma \vdash \Delta, \alpha, \Delta^{\prime} ; \Psi\right)}{?\left(\Phi ; \Gamma \vdash \Delta, \alpha_{1}, \Delta^{\prime} ; \Gamma \vdash \Delta, \alpha_{2}, \Delta^{\prime} ; \Psi\right)} \mathbf{R}_{\alpha} \\
\frac{?\left(\Phi ; \Gamma, \beta, \Gamma^{\prime} \vdash \Delta ; \Psi\right)}{?\left(\Phi ; \Gamma, \beta_{1}, \Gamma^{\prime} \vdash \Delta ; \Gamma, \beta_{2}, \Gamma^{\prime} \vdash \Delta ; \Psi\right)} \mathbf{L}_{\beta} & \frac{?\left(\Phi ; \Gamma \vdash \Delta, \beta, \Delta^{\prime} ; \Psi\right)}{?\left(\Phi ; \Gamma \vdash \Delta, \beta_{1}, \beta_{2}, \Delta^{\prime} ; \Psi\right)} \mathbf{R}_{\beta} \\
\frac{?\left(\Phi ; \Gamma, \neg \neg A, \Gamma^{\prime} \vdash \Delta ; \Psi\right)}{?\left(\Phi ; \Gamma, A, \Gamma^{\prime} \vdash \Delta ; \Psi\right)} \mathbf{L}_{\neg\urcorner} & \frac{?\left(\Phi ; \Gamma \vdash \Delta, \neg \neg A, \Delta^{\prime} ; \Psi\right)}{?\left(\Phi ; \Gamma \vdash \Delta, A, \Delta^{\prime} ; \Psi\right)} \mathbf{R}_{\neg \neg}
\end{array}
$$

Rules for processing questions of $\mathbb{E}^{\mathrm{CPL}}$

$$
\begin{array}{cc}
\frac{\alpha_{1}, \alpha_{2}, \Gamma \vdash \Delta}{\alpha, \Gamma \vdash \Delta} \mathbf{L}_{\alpha} & \frac{\Gamma \vdash \Delta, \alpha_{1} \Gamma \vdash \Delta, \alpha_{2}}{\Gamma \vdash \Delta, \alpha} \mathbf{R}_{\alpha} \\
\frac{\beta_{1}, \Gamma \vdash \Delta \beta_{2}, \Gamma \vdash \Delta}{\beta, \Gamma \vdash \Delta} \mathbf{L}_{\beta} & \frac{\Gamma \vdash \Delta, \beta_{1}, \beta_{2}}{\Gamma \vdash \Delta, \beta} \mathbf{R}_{\beta} \\
\frac{A, \Gamma \vdash \Delta}{\neg \neg A, \Gamma \vdash \Delta} \mathbf{L}_{\neg\urcorner} & \frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta, \neg \neg A} \mathbf{R}_{\neg\urcorner}
\end{array}
$$

Rules for processing questions of $\mathbb{E}^{\mathrm{CPL}}$

Socratic transformation

A finite sequence of questions $\mathbf{s}=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ is a Socratic transformation (s-transformation) of the question ?(Φ) by means of $\mathbb{E}^{\mathrm{CPL}}$ iff the following conditions hold:

- $s_{1}=$? (Φ),
- s_{i} results from $s_{i-1}($ where $i>1)$ by an application of a rule of $\mathbb{E}^{\mathrm{CPL}}$.

Example

Knowledge base:

$$
\Gamma=\langle p \rightarrow(q \rightarrow r), \neg(q \rightarrow s)\rangle
$$

Example

Knowledge base:

$$
\Gamma=\langle p \rightarrow(q \rightarrow r), \neg(q \rightarrow s)\rangle
$$

What we want to derive:

$$
\Delta=\langle z\rangle
$$

Example

Knowledge base:

$$
\Gamma=\langle p \rightarrow(q \rightarrow r), \neg(q \rightarrow s)\rangle
$$

What we want to derive:

$$
\Delta=\langle z\rangle
$$

The question arises:

$$
\begin{gathered}
?(\Gamma \vdash \Delta) \\
?(p \rightarrow(q \rightarrow r), \neg(q \rightarrow s) \vdash z)
\end{gathered}
$$

Example

$$
?(p \rightarrow(q \rightarrow r), \neg(q \rightarrow s) \vdash z)
$$

Example

$$
\begin{gathered}
\frac{?(p \rightarrow(q \rightarrow r), \neg(q \rightarrow s) \vdash z)}{?(p \rightarrow(q \rightarrow r), q, \neg s \vdash z)} \mathbf{L}_{\alpha} \\
?(\neg p, q, q, \neg s \vdash z ; q \rightarrow r, q, \neg s \vdash z) \\
\mathbf{L}_{\beta} \\
?(\neg p, \neg s \vdash z ; \neg q, q, \neg s \vdash z ; r, q, \neg s \vdash z) \\
\mathbf{L}_{\beta}
\end{gathered}
$$

Exercises

Produce Socratic transformations of the following questions:
(1)? $(\neg(\neg p \wedge q) \vdash p \vee \neg \neg \neg q)$
2) ? $((p \rightarrow q) \rightarrow p \vdash p)$
3) ? $(p \vee q \vdash(p \rightarrow r) \rightarrow((q \rightarrow r) \rightarrow r))$
4. $?(p \rightarrow q, q \rightarrow p, \neg(p \wedge r) \vdash \neg q \vee \neg r)$

Answers

How to answer an abductive question?

To answer an abductive question ? $(\Gamma \vdash \Delta)$ we employ the following procedure:
Step 1 Create a complete s-transformation of the question ? $(\Gamma \vdash \Delta)$; the last question of this s-transformation is based on a sequence of sequents each of which consists of literals only.
Step 2 Apply some abductive rules (to be introduced later on) to this last question; each rule is local in the sense that only one sequent at a time is active in such a rule.
Step 3 Combine the results of the applications of rules using a conjunction; the resulting hypothesis has the form $H=A_{1} \wedge \ldots \wedge A_{n}$, where each $A_{i}(1 \leq i \leq n)$ is the conclusion of an abductive rule.

Rules for answering questions of $\mathbb{E}^{\mathrm{CPL}}$

By a literal we will mean a propositional variable or negation of a propositional variable. Moreover, if $I=p$ then $\bar{I}=\neg p$ and if $I=\neg p$ then $\bar{I}=p$.

$$
\frac{?\left(\Phi ; \Theta, I, \Theta^{\prime} \vdash \Theta^{\prime \prime} ; \Psi\right)}{\bar{l}} \mathbf{R}_{a b d}^{1}
$$

$$
\frac{?\left(\Phi ; \Theta, I, \Theta^{\prime} \vdash \Theta^{\prime \prime}, k, \Theta^{\prime \prime \prime} ; \Psi\right)}{l \rightarrow k} \mathbf{R}_{a b d}^{2}
$$

Example - continuation

$$
\begin{gathered}
?(p \rightarrow(q \rightarrow r), \neg(q \rightarrow s) \vdash z) \\
\vdots \\
?(\neg p, q, \neg s \vdash z ; \neg q, q, \neg s \vdash z ; r, q, \neg s \vdash z)
\end{gathered}
$$

For $\neg p, q, \neg s \vdash z$:
$\mathbf{R}_{a b d}^{1}: p, \neg q, s$
$\mathbf{R}_{a b d}^{2}: \neg p \rightarrow z, q \rightarrow z, \neg s \rightarrow z$

Example - continuation

$$
\begin{gathered}
?(p \rightarrow(q \rightarrow r), \neg(q \rightarrow s) \vdash z) \\
\vdots \\
?(\neg p, q, \neg s \vdash z ; \neg q, q, \neg s \vdash z ; r, q, \neg s \vdash z)
\end{gathered}
$$

$$
\begin{aligned}
& \text { For } \neg p, q, \neg s \vdash z: \\
& \mathbf{R}_{a b d}^{1}: p, \neg q, s \\
& \mathbf{R}_{a b d}^{2}: \neg p \rightarrow z, q \rightarrow z, \neg s \rightarrow z
\end{aligned}
$$

For $r, q, \neg s \vdash z$:

$$
\mathbf{R}_{a b d}^{1}: \neg r, \neg q, s
$$

$$
\mathbf{R}_{a b d}^{2}: r \rightarrow z, q \rightarrow z, \neg s \rightarrow z
$$

Properties of abductive hypotheses

Properties of abductive hypotheses

1. Consistency: $\Gamma \cup\{H\}$ is consistent.
2. Significance: $H \nvdash$ cPL A.

Properties of abductive hypotheses

Downward saturated set

Let Γ be a sequence of formulas of $\mathcal{L}_{\mathrm{CPL}}$. By a downward saturated set (or Hintikka set) corresponding to a sequence Γ we mean a set \mathfrak{U}_{Γ}, which fulfils the following conditions:

1. if A is a term of Γ, then $A \in \mathfrak{U}_{\Gamma}$,
2. if $\alpha \in \mathfrak{U}_{\Gamma}$, then $\alpha_{1} \in \mathfrak{U}_{\Gamma}$ and $\alpha_{2} \in \mathfrak{U}_{\Gamma}$,
3. if $\beta \in \mathfrak{U}_{\Gamma}$, then $\beta_{1} \in \mathfrak{U}_{\Gamma}$ or $\beta_{2} \in \mathfrak{U}_{\Gamma}$,
4. if $\neg \neg A \in \mathfrak{U}_{\Gamma}$, then $A \in \mathfrak{U}_{\Gamma}$.
5. nothing more belongs to \mathfrak{U}_{Γ} except those formulas which enter \mathfrak{U}_{Γ} on the grounds of conditions 1-4.

Properties of abductive hypotheses

Downward saturated set

Let Γ be a sequence of formulas of $\mathcal{L}_{\mathrm{CPL}}$. By a downward saturated set (or Hintikka set) corresponding to a sequence Γ we mean a set \mathfrak{U}_{Γ}, which fulfils the following conditions:

1. if A is a term of Γ, then $A \in \mathfrak{U}_{\Gamma}$,
2. if $\alpha \in \mathfrak{U}_{\Gamma}$, then $\alpha_{1} \in \mathfrak{U}_{\Gamma}$ and $\alpha_{2} \in \mathfrak{U}_{\Gamma}$,
3. if $\beta \in \mathfrak{U}_{\Gamma}$, then $\beta_{1} \in \mathfrak{U}_{\Gamma}$ or $\beta_{2} \in \mathfrak{U}_{\Gamma}$,
4. if $\neg \neg A \in \mathfrak{U}_{\Gamma}$, then $A \in \mathfrak{U}_{\Gamma}$.
5. nothing more belongs to \mathfrak{U}_{Γ} except those formulas which enter \mathfrak{U}_{Γ} on the grounds of conditions 1-4.

$$
\mathfrak{U}_{\Gamma}^{\mathfrak{c}}=\left\{\mathfrak{U}_{\Gamma}^{1}, \ldots, \mathfrak{U}_{\Gamma}^{n}\right\}
$$

Propertiec of abductive hypotheses

$$
\frac{?\left(\Phi ; \Theta, I, \Theta^{\prime} \vdash \Theta^{\prime \prime} ; \Psi\right)}{\bar{l}} \mathbf{R}_{a b d}^{1}
$$

There exists a set $\mathfrak{U}_{\Gamma} \in \mathfrak{U}_{\Gamma}^{\mathcal{C}}$ such that $I \notin \mathfrak{U}_{\Gamma}$

Propertiec of abductive hypotheses

$$
\frac{?\left(\Phi ; \Theta, I, \Theta^{\prime} \vdash \Theta^{\prime \prime} ; \Psi\right)}{\bar{l}} \mathbf{R}_{a b d}^{1}
$$

There exists a set $\mathfrak{U}_{\Gamma} \in \mathfrak{U}_{\Gamma}^{c}$ such that

$$
I \notin \mathfrak{U}_{\Gamma}
$$

$$
\frac{?\left(\Phi ; \Theta, I, \Theta^{\prime} \vdash \Theta^{\prime \prime}, k, \Theta^{\prime \prime \prime} ; \Psi\right)}{l \rightarrow k} \mathbf{R}_{a b d}^{2}
$$

There exists a set $\mathfrak{U}_{\Gamma} \in \mathfrak{U}_{\Gamma}^{\mathcal{C}}$ such that

$$
I \notin \mathfrak{U}_{\Gamma} \quad \text { or } \quad \bar{k} \notin \mathfrak{U}_{\Gamma}
$$

Properties of abductive hypotheses

Dual downward saturated set

Let Δ be a sequence of formulas of $\mathcal{L}_{\mathrm{CPL}}$. By a dual downward saturated set (or dual Hintikka set) corresponding to a sequence Δ we mean a set \mathfrak{W}_{Δ}, which fulfils the following conditions:

1. if A is a term of Δ, then $A \in \mathfrak{W}_{\Delta}$,
2. if $\alpha \in \mathfrak{W}_{\Delta}$, then $\alpha_{1} \in \mathfrak{W}_{\Delta}$ or $\alpha_{2} \in \mathfrak{W}_{\Delta}$,
3. if $\beta \in \mathfrak{W}_{\Delta}$, then $\beta_{1} \in \mathfrak{W}_{\Delta}$ and $\beta_{2} \in \mathfrak{W}_{\Delta}$,
4. if $\neg \neg A \in \mathfrak{W}_{\Delta}$, then $A \in \mathfrak{W}_{\Delta}$.
5. nothing more belongs to \mathfrak{W}_{Δ} except those formulas which enter \mathfrak{W}_{Δ} on the grounds of conditions $1-4$.

Properties of abductive hypotheses

Dual downward saturated set

Let Δ be a sequence of formulas of $\mathcal{L}_{\mathrm{CPL}}$. By a dual downward saturated set (or dual Hintikka set) corresponding to a sequence Δ we mean a set \mathfrak{W}_{Δ}, which fulfils the following conditions:

1. if A is a term of Δ, then $A \in \mathfrak{W}_{\Delta}$,
2. if $\alpha \in \mathfrak{W}_{\Delta}$, then $\alpha_{1} \in \mathfrak{W}_{\Delta}$ or $\alpha_{2} \in \mathfrak{W}_{\Delta}$,
3. if $\beta \in \mathfrak{W}_{\Delta}$, then $\beta_{1} \in \mathfrak{W}_{\Delta}$ and $\beta_{2} \in \mathfrak{W}_{\Delta}$,
4. if $\neg \neg A \in \mathfrak{W}_{\Delta}$, then $A \in \mathfrak{W}_{\Delta}$.
5. nothing more belongs to \mathfrak{W}_{Δ} except those formulas which enter \mathfrak{W}_{Δ} on the grounds of conditions $1-4$.

$$
\mathfrak{W}_{\Delta}^{n v}=\left\{\mathfrak{W}_{\Delta}^{1}, \ldots, \mathfrak{W}_{\Delta}^{n}\right\}
$$

Properties of abductive hypotheses

$$
\frac{?\left(\Phi ; \Theta, I, \Theta^{\prime} \vdash \Theta^{\prime \prime} ; \Psi\right)}{\bar{l}} \mathbf{R}_{a b d}^{1}
$$

There exists a set $\mathfrak{W}_{\Delta} \in \mathfrak{W}_{\Delta}^{n v}$ such that
$\bar{I} \notin \mathfrak{W}_{\Delta}$

Properties of abductive hypotheses

$$
\frac{?\left(\Phi ; \Theta, l, \Theta^{\prime} \vdash \Theta^{\prime \prime} ; \Psi\right)}{\bar{l}} \mathbf{R}_{a b d}^{1}
$$

$$
\frac{?\left(\Phi ; \Theta, I, \Theta^{\prime} \vdash \Theta^{\prime \prime}, k, \Theta^{\prime \prime \prime} ; \Psi\right)}{l \rightarrow k} \mathbf{R}_{a b d}^{2}
$$

There exists a set $\mathfrak{W}_{\Delta} \in \mathfrak{W}_{\Delta}^{n v}$ such that

$$
\bar{l} \notin \mathfrak{W}_{\Delta}
$$

There exists a set $\mathfrak{W}_{\Delta} \in \mathfrak{W}_{\Delta}^{n v}$ such that

$$
\mathfrak{I} \notin \mathfrak{W}_{\Delta} \quad \text { or } \quad k \notin \mathfrak{W}_{\Delta}
$$

Consistent abductive hypotheses

(1) Choose A_{i}.
2) Leave in $\mathfrak{U}_{\Gamma}^{C}$ only those \mathfrak{U}_{Γ} that are consistent with A_{i}.
(3) If there are still open sequents, then choose $A_{j} \ldots$

Example - continuation

$$
\begin{aligned}
& \Gamma=\langle p \rightarrow(q \rightarrow r), \neg(q \rightarrow s)\rangle \\
& \Delta=\langle z\rangle \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \frac{?(\neg p \rightarrow(q, q, \neg s \vdash z ; \neg q, q, \neg s \vdash z ; r, q, \neg s \vdash z)}{?(p \rightarrow q, \neg s \vdash z ; q \rightarrow(q \rightarrow r), q, \neg s \vdash z)} \mathbf{L}_{\alpha}
\end{aligned}
$$

Example - continuation

$$
\begin{aligned}
& \Gamma=\langle p \rightarrow(q \rightarrow r), \neg(q \rightarrow s)\rangle \\
& \mathfrak{U}_{\Gamma}^{1}=\{p \rightarrow(q \rightarrow r), \neg(q \rightarrow s), q, \neg s, \neg p\} \\
& \mathfrak{U}_{\Gamma}^{2}=\{p \rightarrow(q \rightarrow r), \neg(q \rightarrow s), q, \neg s, q \rightarrow r, \neg q\} \\
& \mathfrak{U}_{\Gamma}^{3}=\{p \rightarrow(q \rightarrow r), \neg(q \rightarrow s), q, \neg s, q \rightarrow r, r\} \\
& \mathfrak{U}_{\Gamma}^{4}=\{p \rightarrow(q \rightarrow r), \neg(q \rightarrow s), q, \neg s, q \rightarrow r, r, \neg q\} \\
& \mathfrak{U}_{\Gamma}^{5}=\{p \rightarrow(q \rightarrow r), \neg(q \rightarrow s), q, \neg s, q \rightarrow r, r, \neg q, \neg p\} \\
& \mathfrak{U}_{\Gamma}^{6}=\{p \rightarrow(q \rightarrow r), \neg(q \rightarrow s), q, \neg s, q \rightarrow r, r, \neg p\} \\
& \mathfrak{U}_{\Gamma}^{7}=\{p \rightarrow(q \rightarrow r), \neg(q \rightarrow s), q, \neg s, q \rightarrow r, \neg q, \neg p\} \\
& \mathfrak{U}_{\Gamma}^{c}=\left\{\mathfrak{U}_{\Gamma}^{1}, \mathfrak{U}_{\Gamma}^{3}, \mathfrak{U}_{\Gamma}^{6}\right\}
\end{aligned}
$$

Example - continuation

$$
\begin{aligned}
& \Delta=\langle z\rangle \\
& \mathfrak{W}_{\Delta}^{1}=\{z\} \\
& \mathfrak{W}_{\Delta}^{n v}=\left\{\mathfrak{W}_{\Delta}^{1}\right\}
\end{aligned}
$$

Example - continuation

$$
\begin{gathered}
?(p \rightarrow(q \rightarrow r), \neg(q \rightarrow s) \vdash z) \\
\vdots \\
?(\neg p, q, \neg s \vdash z ; \neg q, q, \neg s \vdash z ; r, q, \neg s \vdash z)
\end{gathered}
$$

$\mathfrak{U}_{\Gamma}^{c}$:

- $\mathfrak{U}_{\Gamma}^{1}=\{p \rightarrow(q \rightarrow r), \neg(q \rightarrow s), q, \neg s, \neg p\}$
- $\mathfrak{U}_{\stackrel{3}{3}}=\{p \rightarrow(q \rightarrow r), \neg(q \rightarrow s), q, \neg s, q \rightarrow r, r\}$
- $\mathfrak{U}_{\mathrm{r}}^{6}=\{p \rightarrow(q \rightarrow r), \neg(q \rightarrow s), q, \neg s, q \rightarrow r, r, \neg p\}$

Example - continuation

$$
\begin{gathered}
?(p \rightarrow(q \rightarrow r), \neg(q \rightarrow s) \vdash z) \\
\vdots \\
?(\neg p, q, \neg s \vdash z ; \neg q, q, \neg s \vdash z ; r, q, \neg s \vdash z)
\end{gathered}
$$

$A_{1}=p \quad$ by means of $\mathbf{R}_{a b d}^{1}$
$\mathfrak{U}_{\Gamma}^{c}:$

- $\mathfrak{U}_{\Gamma}^{1}=\{p \rightarrow(q \rightarrow r), \neg(q \rightarrow s), q, \neg s, \neg p\}$
- $\mathfrak{U}_{\Gamma}^{3}=\{p \rightarrow(q \rightarrow r), \neg(q \rightarrow s), q, \neg s, q \rightarrow r, r\}$
- $\mathfrak{U}_{\Gamma}^{6}=\{p \rightarrow(q \rightarrow r), \neg(q \rightarrow s), q, \neg s, q \rightarrow r, r, \neg p\}$

Example - continuation

$$
\begin{gathered}
?(p \rightarrow(q \rightarrow r), \neg(q \rightarrow s) \vdash z) \\
\vdots \\
?(\neg p, q, \neg s \vdash z ; \neg q, q, \neg s \vdash z ; r, q, \neg s \vdash z)
\end{gathered}
$$

$$
\begin{array}{ll}
A_{1}=p & \text { by means of } \mathbf{R}_{a b d}^{1} \\
A_{2}=r \rightarrow z & \text { by means of } \mathbf{R}_{a b d}^{2}
\end{array}
$$

$\mathfrak{U}_{\Gamma}^{c}:$

- $\mathfrak{U}_{\Gamma}^{1}=\{p \rightarrow(q \rightarrow r), \neg(q \rightarrow s), q, \neg s, \neg p\}$
- $\mathfrak{U}_{\Gamma}^{3}=\{p \rightarrow(q \rightarrow r), \neg(q \rightarrow s), q, \neg s, q \rightarrow r, r\}$
- $\mathfrak{U}_{\Gamma}^{6}=\{p \rightarrow(q \rightarrow r), \neg(q \rightarrow s), q, \neg s, q \rightarrow r, r, \neg p\}$

Example - continuation

$$
\begin{gathered}
?(p \rightarrow(q \rightarrow r), \neg(q \rightarrow s) \vdash z) \\
\vdots \\
?(\neg p, q, \neg s \vdash z ; \neg q, q, \neg s \vdash z ; r, q, \neg s \vdash z)
\end{gathered}
$$

$A_{1}=p \quad$ by means of $\mathbf{R}_{a b d}^{1}$
$A_{2}=r \rightarrow z$
by means of $\mathbf{R}_{a b d}^{2}$

$$
H=p \wedge(r \rightarrow z)
$$

$\mathfrak{U}_{\Gamma}^{c}:$

- $\mathfrak{U}_{\Gamma}^{1}=\{p \rightarrow(q \rightarrow r), \neg(q \rightarrow s), q, \neg s, \neg p\}$
- $\mathfrak{U}_{\Gamma}^{3}=\{p \rightarrow(q \rightarrow r), \neg(q \rightarrow s), q, \neg s, q \rightarrow r, r\}$
- $\mathfrak{U}_{\Gamma}^{6}=\{p \rightarrow(q \rightarrow r), \neg(q \rightarrow s), q, \neg s, q \rightarrow r, r, \neg p\}$

Example - continuation

$$
\begin{gathered}
?(p \rightarrow(q \rightarrow r), \neg(q \rightarrow s) \vdash z) \\
\vdots \\
?(\neg p, q, \neg s \vdash z ; \neg q, q, \neg s \vdash z ; r, q, \neg s \vdash z)
\end{gathered}
$$

Example - continuation

$$
\begin{gathered}
?(p \rightarrow(q \rightarrow r), \neg(q \rightarrow s) \vdash z) \\
\vdots \\
?(\neg p, q, \neg s \vdash z ; \neg q, q, \neg s \vdash z ; r, q, \neg s \vdash z)
\end{gathered}
$$

$$
H=p \wedge(r \rightarrow z)
$$

Example - continuation

$$
\begin{gathered}
?(p \rightarrow(q \rightarrow r), \neg(q \rightarrow s) \vdash z) \\
\vdots \\
?(\neg p, q, \neg s \vdash z ; \neg q, q, \neg s \vdash z ; r, q, \neg s \vdash z)
\end{gathered}
$$

$$
H=p \wedge(r \rightarrow z)
$$

$$
p \wedge(r \rightarrow z), p \rightarrow(q \rightarrow r), \neg(q \rightarrow s) \vdash \mathrm{CPL} z
$$

Example - continuation

$$
\begin{gathered}
?(p \rightarrow(q \rightarrow r), \neg(q \rightarrow s) \vdash z) \\
\vdots \\
?(\neg p, q, \neg s \vdash z ; \neg q, q, \neg s \vdash z ; r, q, \neg s \vdash z)
\end{gathered}
$$

$$
H=p \wedge(r \rightarrow z)
$$

$$
p \wedge(r \rightarrow z), p \rightarrow(q \rightarrow r), \neg(q \rightarrow s) \vdash \mathrm{CPL} z
$$

$$
p \wedge(r \rightarrow z), p \rightarrow(q \rightarrow r), \neg(q \rightarrow s) \nvdash \mathrm{CPL} \perp
$$

Example - continuation

$$
\begin{gathered}
?(p \rightarrow(q \rightarrow r), \neg(q \rightarrow s) \vdash z) \\
\vdots \\
?(\neg p, q, \neg s \vdash z ; \neg q, q, \neg s \vdash z ; r, q, \neg s \vdash z)
\end{gathered}
$$

$$
H=p \wedge(r \rightarrow z)
$$

$$
p \wedge(r \rightarrow z), p \rightarrow(q \rightarrow r), \neg(q \rightarrow s) \vdash \mathrm{CPL} z
$$

$$
p \wedge(r \rightarrow z), p \rightarrow(q \rightarrow r), \neg(q \rightarrow s) \nvdash \mathrm{CPL} \perp
$$

$$
p \wedge(r \rightarrow z) \nvdash \mathrm{CPL} z
$$

consistency
significance

Exercises

Using s-transformations, Hintikka and dual Hintikka sets find consistent and significant abductive hypotheses for the following problems:
(1)? $(\neg(\neg p \wedge q) \vdash \neg \neg \neg q)$
2) ? $(p \vee q \vdash(q \rightarrow r) \rightarrow r)$
3) ? $(p \rightarrow q, q \rightarrow p, \neg(p \wedge r) \vdash \neg q)$
4) ? $(p \vee q, q \rightarrow r \vdash r \vee \neg q)$

5 ? $(p \rightarrow q, q \rightarrow r, r \rightarrow s \vdash s)$
6 ? $(q \vee r, \neg q \vdash s)$
(7) ? $(p \rightarrow q, r \vee s \vdash p \rightarrow s)$
8) ? $((p \vee q) \rightarrow r, s \rightarrow p, t \rightarrow q \vdash r)$

References I

[1] Chlebowski, Sz., Leszczyńska-Jasion, D. [2015]. Dual Erotetic Calculi and the Minimal LFI. Studia Logica, 103(6):1245-1278.
[2] Fitting, M. [2012]. First-order logic and automated theorem proving. Springer.
[3] Hutton, G. [2007] Programming in Haskell. Cambridge University Press.
[4] Urbański, M. [2009]. Rozumowania abdukcyjne. Wydawnictwo Naukowe UAM, Poznań.
[5] Wiśniewski, A. [2004]. Socratic proofs. Journal of Philosophical Logic, 33(3):299-326.
[6] Wiśniewski, A. [2013]. Questions, Inferences, and Scenarios. Studies in Logic, vol: 46. Logic and Cognitive Systems. College Publications, London.

Appendix

AQAS for mbC

$$
\frac{?\left(\Phi ; \Theta, l, \Theta^{\prime} \vdash \Theta^{\prime \prime} ; \Psi\right)}{\bar{l}} \mathbf{R}_{a b d}^{1}
$$

$$
\frac{?\left(\Phi ; \Theta, l, \Theta^{\prime} \vdash \Theta^{\prime \prime}, k, \Theta^{\prime \prime \prime} ; \Psi\right)}{l \rightarrow k} \mathbf{R}_{a b d}^{2}
$$

Appendix

AQAS for mbC

$$
\begin{gathered}
\frac{?\left(\Phi ; \Theta, \chi \circ p, \Theta^{\prime}, \chi \sim p, \Theta^{\prime \prime} \vdash \Theta^{\prime \prime \prime} ; \Psi\right)}{p} \mathbf{R}_{a b d}^{3} \\
\frac{?\left(\Phi ; \Theta, \chi \circ p, \Theta^{\prime}, p, \Theta^{\prime \prime} \vdash \Theta^{\prime \prime \prime} ; \Psi\right)}{\sim p} \mathbf{R}_{a b d}^{4} \\
\frac{?\left(\Phi ; \Theta, p, \Theta^{\prime}, \chi \sim p, \Theta^{\prime \prime} \vdash \Theta^{\prime \prime \prime} ; \Psi\right)}{\circ p} \mathbf{R}_{a b d}^{5}
\end{gathered}
$$

Appendix

AQAS for mbC

$$
\begin{aligned}
& \frac{?\left(\Phi ; \Theta, \chi \sim p, \Theta^{\prime}, \chi \circ p, \Theta^{\prime \prime} \vdash \Theta^{\prime \prime \prime} ; \Psi\right)}{p} \mathbf{R}_{a b d}^{3^{*}} \\
& \frac{?\left(\Phi ; \Theta, p, \Theta^{\prime}, \chi \circ p, \Theta^{\prime \prime} \vdash \Theta^{\prime \prime \prime} ; \Psi\right)}{\sim p} \mathbf{R}_{a b d}^{4^{*}} \\
& \frac{?\left(\Phi ; \Theta, \chi \sim p, \Theta^{\prime}, p, \Theta^{\prime \prime} \vdash \Theta^{\prime \prime \prime} ; \Psi\right)}{\circ p} \mathbf{R}_{a b d}^{5^{*}}
\end{aligned}
$$

Appendix

AQAS for normal modal logics

$$
\begin{gathered}
\frac{?\left(\Phi ; \Theta, I, \Theta^{\prime} \vdash \Theta^{\prime \prime} ; \Psi\right)}{\bar{l}} \mathbf{R}_{a b d}^{1} \\
\frac{?\left(\Phi ; \Theta, I, \Theta^{\prime} \vdash \Theta^{\prime \prime}, k, \Theta^{\prime \prime \prime} ; \Psi\right)}{I \rightarrow k} \mathbf{R}_{a b d}^{2}
\end{gathered}
$$

Appendix

AQAS for normal modal logics

$$
\frac{?\left(\Phi ; x_{1} R \cdots R x_{n}, \Theta, x_{n}: I, \Theta^{\prime} \vdash \Theta^{\prime \prime} ; \Psi\right)}{\square_{n-1} \bar{I}} \mathbf{R}_{a b d}^{1 m}
$$

$$
\frac{?\left(\Phi ; x_{1} R \cdots R x_{n}, \Theta, x_{i}: I, \Theta^{\prime} \vdash \Theta^{\prime \prime}, x_{n}: k, \Theta^{\prime \prime \prime} ; \Psi\right)}{\square_{i-1}\left(I \rightarrow \square_{n-i} k\right)}
$$

