Abductive Question-Answer System (AQAS) for Classical Propositional Logic

Szymon Chlebowski

Reasoning 2022/2023

April 21, 2023

- 1 Abductive reasoning
- 2 Analytic Tableaux
- 3 Properties of abductive hypotheses
- 4 Abductive Question-Answer System

Abductive reasoning

The surprising fact, C, is observed. But if A were true, C would be a matter of course.

Hence, there is reason to suspect that A is true.

The street is wet. If it rained then the streets would be wet.

It rained.

But maybe the snow melted...

....

•

- A knowledge base Γ;
 - a phenomenon ϕ , which is unattainable from Γ .

- A knowledge base Γ;
 a phenomenon φ, which is unattainable from Γ.
- H an abductive hypothesis;
 φ can be computed/derived from Γ' which is equal to Γ augmented with H i.e., Γ ∪ {H} ⊨ φ.

Abduction from an algorithmic point of view

There are four ingredients of the algorithmic account of abduction:

1 A basic logic (which determines the language of specification of A, H and Γ).

Abduction from an algorithmic point of view

There are four ingredients of the algorithmic account of abduction:

1 A basic logic (which determines the language of specification of A, H and Γ).

classical propositional logic/modal logics/paraconsistent logics

Abduction from an algorithmic point of view

There are four ingredients of the algorithmic account of abduction:

1 A basic logic (which determines the language of specification of A, H and Γ).

classical propositional logic/modal logics/paraconsistent logics

2 A proof method (which determines the exact mechanics of the procedure of generation of abducibles).

1 A basic logic (which determines the language of specification of A, H and Γ).

classical propositional logic/modal logics/paraconsistent logics

2 A proof method (which determines the exact mechanics of the procedure of generation of abducibles).

erotetic calculus for CPL/analytic tabelaux

1 A basic logic (which determines the language of specification of A, H and Γ).

classical propositional logic/modal logics/paraconsistent logics

2 A proof method (which determines the exact mechanics of the procedure of generation of abducibles).

erotetic calculus for CPL/analytic tabelaux

3 A hypotheses generation mechanism (which determines the way the chosen proof method is applied in order to generate abducibles).

1 A basic logic (which determines the language of specification of A, H and Γ).

classical propositional logic/modal logics/paraconsistent logics

2 A proof method (which determines the exact mechanics of the procedure of generation of abducibles).

erotetic calculus for CPL/analytic tabelaux

3 A hypotheses generation mechanism (which determines the way the chosen proof method is applied in order to generate abducibles).

question-answer rules/closing branches

1 A basic logic (which determines the language of specification of A, H and Γ).

classical propositional logic/modal logics/paraconsistent logics

2 A proof method (which determines the exact mechanics of the procedure of generation of abducibles).

erotetic calculus for $\ensuremath{\mathsf{CPL}}\xspace$ analytic tabelaux

3 A hypotheses generation mechanism (which determines the way the chosen proof method is applied in order to generate abducibles).

question-answer rules/closing branches

4 An implementation of criteria for comparative evaluation of different abducibles.

1 A basic logic (which determines the language of specification of A, H and Γ).

classical propositional logic/modal logics/paraconsistent logics

2 A proof method (which determines the exact mechanics of the procedure of generation of abducibles).

erotetic calculus for $\ensuremath{\mathsf{CPL}}\xspace$ analytic tabelaux

3 A hypotheses generation mechanism (which determines the way the chosen proof method is applied in order to generate abducibles).

question-answer rules/closing branches

4 An implementation of criteria for comparative evaluation of different abducibles.

Hintikka sets and dual Hintikka sets/...

Analytic Tableaux

			β		
$A \wedge B$ $\neg (A \lor B)$	Α	В	$\neg (A \land B)$	$\neg A$	$\neg B$
$\neg (A \lor B)$	$\neg A$	$\neg B$	$A \lor B$	Α	В
$\neg (A \rightarrow B)$	Α	$\neg B$	A ightarrow B	$\neg A$	В

Example

Let
$$\Gamma = \{p \rightarrow (z \rightarrow q), r \land s\}$$
 and $A = r \rightarrow q$.

$$p \rightarrow (z \rightarrow q)$$

$$r \land s$$

$$\neg (r \rightarrow q)$$

$$r$$

$$\neg q$$

$$\neg p$$

$$z \rightarrow q$$

$$\neg z \rightarrow q$$

$$x$$

Hypotheses: $p \land z$, $p \land q$, q, $\neg r$, ...

Example

Let
$$\Gamma = \{p \rightarrow (z \rightarrow q), r \land s\}$$
 and $A = r \rightarrow q$.

$$p \rightarrow (z \rightarrow q)$$

$$r \land s$$

$$\neg (r \rightarrow q)$$

$$r$$

$$\neg q$$

$$\neg p$$

$$z \rightarrow q$$

$$\neg z \rightarrow q$$

$$x$$

Hypotheses: $p \land z$, $p \land q$, q, $\neg r$, ... Which of them are good? Properties of abductive hypotheses

- Γ = knowledge base, A = abductive goal, H = hypothesis
 - consistency: $\Gamma \cup \{H\}$ is consistent;
 - significance: $H \not\vdash A$;
 - complexity: *simpler* hypotheses are better;
 - minimality: weaker hypotheses vs stronger ones if p is good abductive hypothesis, then p ∧ q seems to strong.

Find abductive hypotheses for the following problems. What properties do they have?

1
$$\Gamma = \{q \lor r, \neg q\}, A = s$$

2 $\Gamma = \{p \rightarrow q, q \rightarrow r, r \rightarrow s\}, A = s$
3 $\Gamma = \{p \rightarrow q, r \lor s\}, A = p \rightarrow s$
4 $\Gamma = \{(p \lor q) \rightarrow r, s \rightarrow p, t \rightarrow q\}, A = r$

Abductive Question-Answer System

Abductive Question-Answer System

Rules for questions procesing

Question Question Rules for answering questions

Question Answer Questions

An atomic declarative formula (sequent) of $\mathcal{L}^{?}_{\mathsf{CPL}}$

 $\Gamma\vdash\Delta$

where Γ and Δ are finite, non-empty, sequences of formulas of $\mathcal{L}_{CPL}.$

An atomic declarative formula (sequent) of $\mathcal{L}^{?}_{CPL}$

 $\Gamma\vdash\Delta$

where Γ and Δ are finite, non-empty, sequences of formulas of $\mathcal{L}_{CPL}.$

Questions of $\mathcal{L}^{?}_{CPL}$

?(Φ)

where Φ is a finite, non-empty sequence of sequents of $\mathcal{L}^{?}_{CPL}$.

$$\frac{?(\Phi; \Gamma, \alpha, \Gamma' \vdash \Delta; \Psi)}{?(\Phi; \Gamma, \alpha_1, \alpha_2, \Gamma' \vdash \Delta; \Psi)} \mathbf{L}_{\alpha}$$
$$\frac{?(\Phi; \Gamma, \beta, \Gamma' \vdash \Delta; \Psi)}{?(\Phi; \Gamma, \beta_1, \Gamma' \vdash \Delta; \Gamma, \beta_2, \Gamma' \vdash \Delta; \Psi)} \mathbf{L}_{\beta}$$
$$\frac{?(\Phi; \Gamma, \neg \neg A, \Gamma' \vdash \Delta; \Psi)}{?(\Phi; \Gamma, A, \Gamma' \vdash \Delta; \Psi)} \mathbf{L}_{\neg \neg}$$

$$\frac{?(\Phi; \Gamma \vdash \Delta, \alpha, \Delta'; \Psi)}{?(\Phi; \Gamma \vdash \Delta, \alpha_1, \Delta'; \Gamma \vdash \Delta, \alpha_2, \Delta'; \Psi)} \mathbf{R}_{\alpha}$$
$$\frac{?(\Phi; \Gamma \vdash \Delta, \beta, \Delta'; \Psi)}{?(\Phi; \Gamma \vdash \Delta, \beta_1, \beta_2, \Delta'; \Psi)} \mathbf{R}_{\beta}$$
$$\frac{?(\Phi; \Gamma \vdash \Delta, \neg \neg A, \Delta'; \Psi)}{?(\Phi; \Gamma \vdash \Delta, A, \Delta'; \Psi)} \mathbf{R}_{\neg \neg}$$

Rules for processing questions of \mathbb{E}^{CPL}

$$\frac{\alpha_{1}, \alpha_{2}, \Gamma \vdash \Delta}{\alpha, \Gamma \vdash \Delta} \mathbf{L}_{\alpha} \qquad \frac{\Gamma \vdash \Delta, \alpha_{1} \quad \Gamma \vdash \Delta, \alpha_{2}}{\Gamma \vdash \Delta, \alpha} \mathbf{R}_{\alpha}$$

$$\frac{\beta_{1}, \Gamma \vdash \Delta}{\beta, \Gamma \vdash \Delta} \mathbf{L}_{\beta} \qquad \frac{\Gamma \vdash \Delta, \beta_{1}, \beta_{2}}{\Gamma \vdash \Delta, \beta} \mathbf{R}_{\beta}$$

$$\frac{A, \Gamma \vdash \Delta}{\neg \neg A, \Gamma \vdash \Delta} \mathbf{L}_{\neg \neg} \qquad \frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta, \neg \neg A} \mathbf{R}_{\neg \neg}$$

Socratic transformation

A finite sequence of questions $\mathbf{s} = \langle s_1, \ldots, s_n \rangle$ is a *Socratic transformation* (s-transformation) of the question $?(\Phi)$ by means of \mathbb{E}^{CPL} iff the following conditions hold:

- *s*₁ =?(Φ),
- s_i results from s_{i-1} (where i > 1) by an application of a rule of $\mathbb{E}^{\mathsf{CPL}}$.

Knowledge base:

$${\sf \Gamma}=\langle {\sf p}
ightarrow ({\it q}
ightarrow {\it r}),
eg ({\it q}
ightarrow {\it s})
angle$$

Knowledge base:

$$\Gamma = \langle p
ightarrow (q
ightarrow r),
eg (q
ightarrow s)
angle$$

What we want to derive:

$$\Delta = \langle z
angle$$

Knowledge base:

$$\Gamma = \langle p
ightarrow (q
ightarrow r),
eg (q
ightarrow s)
angle$$

What we want to derive:

$$\Delta = \langle z
angle$$

The question arises:

$$?(\Gamma \vdash \Delta)$$

 $?(p \rightarrow (q \rightarrow r), \neg (q \rightarrow s) \vdash z)$

$$?(p
ightarrow (q
ightarrow r),
eg(q
ightarrow s) dash z)$$

$$\frac{\frac{?(p \to (q \to r), \neg (q \to s) \vdash z)}{?(p \to (q \to r), q, \neg s \vdash z)} \mathbf{L}_{\alpha}}{\frac{?(p \to (q \to r), q, \neg s \vdash z)}{?(\neg p, q, \neg s \vdash z ; q \to r, q, \neg s \vdash z)} \mathbf{L}_{\beta}}{\mathbf{L}_{\beta}}$$

Produce Socratic transformations of the following questions:

1
$$?(\neg(\neg p \land q) \vdash p \lor \neg \neg \neg q)$$

2 $?((p \rightarrow q) \rightarrow p \vdash p)$
3 $?(p \lor q \vdash (p \rightarrow r) \rightarrow ((q \rightarrow r) \rightarrow r))$
4 $?(p \rightarrow q, q \rightarrow p, \neg(p \land r) \vdash \neg q \lor \neg r)$

Answers

To answer an abductive question $?(\Gamma \vdash \Delta)$ we employ the following procedure:

- Step 1 Create a complete s-transformation of the question $?(\Gamma \vdash \Delta)$; the last question of this s-transformation is based on a sequence of sequents each of which consists of literals only.
- Step 2 Apply some abductive rules (to be introduced later on) to this last question; each rule is *local* in the sense that only one sequent at a time is active in such a rule.
- Step 3 Combine the results of the applications of rules using a conjunction; the resulting hypothesis has the form $H = A_1 \land \ldots \land A_n$, where each A_i $(1 \le i \le n)$ is the conclusion of an abductive rule.

By a *literal* we will mean a propositional variable or negation of a propositional variable.

Moreover, if l = p then $\overline{l} = \neg p$ and if $l = \neg p$ then $\overline{l} = p$.

$$\frac{?(\Phi \ ; \ \Theta, I, \Theta' \vdash \Theta'' \ ; \ \Psi)}{\overline{I}} \ \mathsf{R}^{1}_{abd}$$

$$\frac{?(\Phi ; \Theta, I, \Theta' \vdash \Theta'', k, \Theta''' ; \Psi)}{I \to k} \mathbf{R}^{2}_{abd}$$

$$\begin{array}{c} ?(p \rightarrow (q \rightarrow r), \neg (q \rightarrow s) \vdash z) \\ \vdots \\ ?(\neg p, q, \neg s \vdash z \ ; \ \neg q, q, \neg s \vdash z \ ; \ r, q, \neg s \vdash z \) \end{array}$$

For
$$\neg p, q, \neg s \vdash z$$
:
 \mathbf{R}^{1}_{abd} : $p, \neg q, s$
 \mathbf{R}^{2}_{abd} : $\neg p \rightarrow z, q \rightarrow z, \neg s \rightarrow z$

$$\begin{array}{c} ?(p \rightarrow (q \rightarrow r), \neg (q \rightarrow s) \vdash z) \\ \vdots \\ ?(\neg p, q, \neg s \vdash z ; \neg q, q, \neg s \vdash z ; r, q, \neg s \vdash z) \end{array}$$

For
$$\neg p, q, \neg s \vdash z$$
:For \mathbf{R}^{1}_{abd} : $p, \neg q, s$ \mathbf{R}^{1}_{abd} \mathbf{R}^{2}_{abd} : $\neg p \rightarrow z, q \rightarrow z, \neg s \rightarrow z$ \mathbf{R}^{2}_{abd}

$$\mathbf{R}^{1}_{abd}: \neg r, \neg q, s$$

 $r a \neg c \vdash z$

$$\mathbf{R}^2_{abd}$$
: $r
ightarrow z$, $q
ightarrow z$, $eg s
ightarrow z$

Properties of abductive hypotheses

- 1. Consistency: $\Gamma \cup \{H\}$ is consistent.
- 2. Significance: $H \nvDash_{CPL} A$.

Downward saturated set

Let Γ be a sequence of formulas of \mathcal{L}_{CPL} . By a *downward saturated set* (or *Hintikka set*) corresponding to a sequence Γ we mean a set \mathfrak{U}_{Γ} , which fulfils the following conditions:

- 1. if A is a term of Γ , then $A \in \mathfrak{U}_{\Gamma}$,
- 2. if $\alpha \in \mathfrak{U}_{\Gamma}$, then $\alpha_1 \in \mathfrak{U}_{\Gamma}$ and $\alpha_2 \in \mathfrak{U}_{\Gamma}$,
- 3. if $\beta \in \mathfrak{U}_{\Gamma}$, then $\beta_1 \in \mathfrak{U}_{\Gamma}$ or $\beta_2 \in \mathfrak{U}_{\Gamma}$,
- 4. if $\neg \neg A \in \mathfrak{U}_{\Gamma}$, then $A \in \mathfrak{U}_{\Gamma}$.
- 5. nothing more belongs to \mathfrak{U}_{Γ} except those formulas which enter \mathfrak{U}_{Γ} on the grounds of conditions 1–4.

Downward saturated set

Let Γ be a sequence of formulas of \mathcal{L}_{CPL} . By a *downward saturated set* (or *Hintikka set*) corresponding to a sequence Γ we mean a set \mathfrak{U}_{Γ} , which fulfils the following conditions:

- 1. if A is a term of Γ , then $A \in \mathfrak{U}_{\Gamma}$,
- 2. if $\alpha \in \mathfrak{U}_{\Gamma}$, then $\alpha_1 \in \mathfrak{U}_{\Gamma}$ and $\alpha_2 \in \mathfrak{U}_{\Gamma}$,
- 3. if $\beta \in \mathfrak{U}_{\Gamma}$, then $\beta_1 \in \mathfrak{U}_{\Gamma}$ or $\beta_2 \in \mathfrak{U}_{\Gamma}$,
- 4. if $\neg \neg A \in \mathfrak{U}_{\Gamma}$, then $A \in \mathfrak{U}_{\Gamma}$.
- 5. nothing more belongs to \mathfrak{U}_{Γ} except those formulas which enter \mathfrak{U}_{Γ} on the grounds of conditions 1–4.

$$\mathfrak{U}_{\Gamma}^{c} = \{\mathfrak{U}_{\Gamma}^{1}, \ldots, \mathfrak{U}_{\Gamma}^{n}\}$$

$$\frac{?(\Phi \ ; \ \Theta, \textit{I}, \Theta' \vdash \Theta'' \ ; \ \Psi)}{\bar{\textit{I}}} \ \mathbf{R}^{1}_{\textit{abd}}$$

There exists a set $\mathfrak{U}_{\Gamma}\in\mathfrak{U}_{\Gamma}^{c}$ such that

 $I \notin \mathfrak{U}_{\Gamma}$

$$\frac{?(\Phi \ ; \ \Theta, \textit{I}, \Theta' \vdash \Theta'' \ ; \ \Psi)}{\bar{\textit{I}}} \ \textbf{R}^{1}_{\textit{abd}}$$

There exists a set $\mathfrak{U}_{\Gamma}\in\mathfrak{U}_{\Gamma}^{c}$ such that

 $I \notin \mathfrak{U}_{\Gamma}$

$$\frac{?(\Phi ; \Theta, I, \Theta' \vdash \Theta'', k, \Theta''' ; \Psi)}{I \rightarrow k} \mathbf{R}^{2}_{abd}$$

There exists a set $\mathfrak{U}_{\Gamma} \in \mathfrak{U}_{\Gamma}^{c}$ such that $I \notin \mathfrak{U}_{\Gamma}$ or $\overline{k} \notin \mathfrak{U}_{\Gamma}$

Dual downward saturated set

Let Δ be a sequence of formulas of \mathcal{L}_{CPL} . By a *dual downward saturated* set (or *dual Hintikka set*) corresponding to a sequence Δ we mean a set \mathfrak{W}_{Δ} , which fulfils the following conditions:

- 1. if A is a term of Δ , then $A \in \mathfrak{W}_{\Delta}$,
- 2. if $\alpha \in \mathfrak{W}_{\Delta}$, then $\alpha_1 \in \mathfrak{W}_{\Delta}$ or $\alpha_2 \in \mathfrak{W}_{\Delta}$,
- 3. if $\beta \in \mathfrak{W}_{\Delta}$, then $\beta_1 \in \mathfrak{W}_{\Delta}$ and $\beta_2 \in \mathfrak{W}_{\Delta}$,
- 4. if $\neg \neg A \in \mathfrak{W}_{\Delta}$, then $A \in \mathfrak{W}_{\Delta}$.
- 5. nothing more belongs to \mathfrak{W}_{Δ} except those formulas which enter \mathfrak{W}_{Δ} on the grounds of conditions 1–4.

Dual downward saturated set

Let Δ be a sequence of formulas of \mathcal{L}_{CPL} . By a *dual downward saturated* set (or *dual Hintikka set*) corresponding to a sequence Δ we mean a set \mathfrak{W}_{Δ} , which fulfils the following conditions:

- 1. if A is a term of Δ , then $A \in \mathfrak{W}_{\Delta}$,
- 2. if $\alpha \in \mathfrak{W}_{\Delta}$, then $\alpha_1 \in \mathfrak{W}_{\Delta}$ or $\alpha_2 \in \mathfrak{W}_{\Delta}$,
- 3. if $\beta \in \mathfrak{W}_{\Delta}$, then $\beta_1 \in \mathfrak{W}_{\Delta}$ and $\beta_2 \in \mathfrak{W}_{\Delta}$,
- 4. if $\neg \neg A \in \mathfrak{W}_{\Delta}$, then $A \in \mathfrak{W}_{\Delta}$.
- 5. nothing more belongs to \mathfrak{W}_{Δ} except those formulas which enter \mathfrak{W}_{Δ} on the grounds of conditions 1–4.

$$\mathfrak{W}^{nv}_{\Delta} = \{\mathfrak{W}^1_{\Delta}, \dots, \mathfrak{W}^n_{\Delta}\}$$

$$\frac{?(\Phi \ ; \ \Theta, \textit{I}, \Theta' \vdash \Theta'' \ ; \ \Psi)}{\bar{\textit{I}}} \ R^1_{\textit{abd}}$$

There exists a set $\mathfrak{W}_\Delta \in \mathfrak{W}_\Delta^{nv}$ such that $\bar{l} \notin \mathfrak{W}_\Delta$

$$\frac{?(\Phi \ ; \ \Theta, \textit{I}, \Theta' \vdash \Theta'' \ ; \ \Psi)}{\overline{\textit{I}}} \ R^1_{\textit{abd}}$$

There exists a set $\mathfrak{W}_\Delta\in\mathfrak{W}_\Delta^{n\nu}$ such that $\bar{l}\notin\mathfrak{W}_\Delta$

$$\frac{?(\Phi ; \Theta, I, \Theta' \vdash \Theta'', k, \Theta''' ; \Psi)}{I \to k} \mathbf{R}^{2}_{abd}$$

There exists a set $\mathfrak{W}_{\Delta}\in\mathfrak{W}_{\Delta}^{n\nu}$ such that

$$\overline{l} \notin \mathfrak{W}_{\Delta}$$
 or $k \notin \mathfrak{W}_{\Delta}$

- 1 Choose A_i.
- 2 Leave in $\mathfrak{U}_{\Gamma}^{c}$ only those \mathfrak{U}_{Γ} that are consistent with A_{i} .
- 3 If there are still open sequents, then choose A_j ...

$$egin{aligned} \mathsf{\Gamma} &= \langle \mathsf{p}
ightarrow (q
ightarrow r),
eg(q
ightarrow s)
angle \ \Delta &= \langle z
angle \end{aligned}$$

$$\frac{\frac{?(p \to (q \to r), \neg (q \to s) \vdash z)}{?(p \to (q \to r), q, \neg s \vdash z)} \mathbf{L}_{\alpha}}{\frac{?(p \to (q \to r), q, \neg s \vdash z)}{?(\neg p, q, \neg s \vdash z ; q \to r, q, \neg s \vdash z)} \mathbf{L}_{\beta}}{\mathbf{L}_{\beta}}$$

$$\begin{split} & \Gamma = \langle p \rightarrow (q \rightarrow r), \neg (q \rightarrow s) \rangle \\ & \mathfrak{U}_{\Gamma}^{1} = \{ p \rightarrow (q \rightarrow r), \neg (q \rightarrow s), q, \neg s, \neg p \} \\ & \mathfrak{U}_{\Gamma}^{2} = \{ p \rightarrow (q \rightarrow r), \neg (q \rightarrow s), q, \neg s, q \rightarrow r, \neg q \} \\ & \mathfrak{U}_{\Gamma}^{3} = \{ p \rightarrow (q \rightarrow r), \neg (q \rightarrow s), q, \neg s, q \rightarrow r, r \} \\ & \mathfrak{U}_{\Gamma}^{4} = \{ p \rightarrow (q \rightarrow r), \neg (q \rightarrow s), q, \neg s, q \rightarrow r, r, \neg q \} \\ & \mathfrak{U}_{\Gamma}^{5} = \{ p \rightarrow (q \rightarrow r), \neg (q \rightarrow s), q, \neg s, q \rightarrow r, r, \neg q, \neg p \} \\ & \mathfrak{U}_{\Gamma}^{6} = \{ p \rightarrow (q \rightarrow r), \neg (q \rightarrow s), q, \neg s, q \rightarrow r, r, \neg p \} \\ & \mathfrak{U}_{\Gamma}^{7} = \{ p \rightarrow (q \rightarrow r), \neg (q \rightarrow s), q, \neg s, q \rightarrow r, \neg q, \neg p \} \\ & \mathfrak{U}_{\Gamma}^{c} = \{ \mathfrak{U}_{\Gamma}^{1}, \mathfrak{U}_{\Gamma}^{3}, \mathfrak{U}_{\Gamma}^{6} \} \end{split}$$

$$\begin{split} \Delta &= \langle z \rangle \\ \mathfrak{W}^{1}_{\Delta} &= \{z\} \\ \mathfrak{W}^{nv}_{\Delta} &= \{\mathfrak{W}^{1}_{\Delta}\} \end{split}$$

$$\begin{array}{c} ?(p \rightarrow (q \rightarrow r), \neg (q \rightarrow s) \vdash z) \\ \vdots \\ ?(\neg p, q, \neg s \vdash z \ ; \ \neg q, q, \neg s \vdash z \ ; \ r, q, \neg s \vdash z \) \end{array}$$

$$\begin{split} \mathfrak{U}_{\mathsf{\Gamma}}^{c} &: \\ \bullet \ \mathfrak{U}_{\mathsf{\Gamma}}^{1} = \{ p \to (q \to r), \neg (q \to s), q, \neg s, \neg p \} \\ \bullet \ \mathfrak{U}_{\mathsf{\Gamma}}^{3} = \{ p \to (q \to r), \neg (q \to s), q, \neg s, q \to r, r \} \\ \bullet \ \mathfrak{U}_{\mathsf{\Gamma}}^{6} = \{ p \to (q \to r), \neg (q \to s), q, \neg s, q \to r, r, \neg p \} \end{split}$$

$$\begin{array}{c} ?(p \rightarrow (q \rightarrow r), \neg (q \rightarrow s) \vdash z) \\ \vdots \\ ?(\neg p, q, \neg s \vdash z \ ; \ \neg q, q, \neg s \vdash z \ ; \ r, q, \neg s \vdash z \) \end{array}$$

$$A_1 = p$$
 by means of \mathbf{R}^1_{abd}

•
$$\mathfrak{U}_{\Gamma}^{1} = \{ p \to (q \to r), \neg (q \to s), q, \neg s, \neg p \}$$

•
$$\mathfrak{U}_{\Gamma}^{2} = \{ p \to (q \to r), \neg (q \to s), q, \neg s, q \to r, r \}$$

•
$$\mathfrak{U}_{\Gamma}^{6} = \{p \rightarrow (q \rightarrow r), \neg (q \rightarrow s), q, \neg s, q \rightarrow r, r, \neg p\}$$

$$\begin{array}{c} ?(p \rightarrow (q \rightarrow r), \neg (q \rightarrow s) \vdash z) \\ \vdots \\ ?(\neg p, q, \neg s \vdash z \ ; \ \neg q, q, \neg s \vdash z \ ; \ r, q, \neg s \vdash z \end{array})$$

$$A_1 = p$$
 by means of \mathbf{R}^1_{abd}

 $A_2 = r \rightarrow z$ by means of \mathbf{R}^2_{abd}

•
$$\mathfrak{U}_{\Gamma}^{1} = \{p \rightarrow (q \rightarrow r), \neg (q \rightarrow s), q, \neg s, \neg p\}$$

• $\mathfrak{U}_{\Gamma}^{3} = \{p \rightarrow (q \rightarrow r), \neg (q \rightarrow s), q, \neg s, q \rightarrow r, r\}$
• $\mathfrak{U}_{\Gamma}^{6} = \{p \rightarrow (q \rightarrow r), \neg (q \rightarrow s), q, \neg s, q \rightarrow r, r, \neg q\}$

$$\begin{array}{c} ?(p \rightarrow (q \rightarrow r), \neg (q \rightarrow s) \vdash z) \\ \vdots \\ ?(\neg p, q, \neg s \vdash z \ ; \ \neg q, q, \neg s \vdash z \ ; \ r, q, \neg s \vdash z \) \end{array}$$

$$A_1 = p$$
 by means of \mathbf{R}^1_{abd}

 $A_2 = r \rightarrow z$ by means of \mathbf{R}^2_{abd}

$$H = p \land (r \to z)$$

(ſ	с	
4		Г	•

- $\mathfrak{U}_{\Gamma}^{1} = \{p \to (q \to r), \neg (q \to s), q, \neg s, \neg p\}$ • $\mathfrak{U}_{\Gamma}^{3} = \{p \to (q \to r), \neg (q \to s), q, \neg s, q \to r, r\}$
- $\mathfrak{U}_{\Gamma}^{6} = \{ p \to (q \to r), \neg (q \to s), q, \neg s, q \to r, r, \neg p \}$

$$\begin{array}{c} ?(p \rightarrow (q \rightarrow r), \neg (q \rightarrow s) \vdash z) \\ \vdots \\ ?(\neg p, q, \neg s \vdash z \ ; \ \neg q, q, \neg s \vdash z \ ; \ r, q, \neg s \vdash z \) \end{array}$$

$$H = p \land (r \to z)$$

$$\begin{array}{c} ?(p \rightarrow (q \rightarrow r), \neg (q \rightarrow s) \vdash z) \\ \vdots \\ ?(\neg p, q, \neg s \vdash z \ ; \ \neg q, q, \neg s \vdash z \ ; \ r, q, \neg s \vdash z \) \end{array}$$

$$egin{aligned} \mathcal{H} &= p \wedge (r
ightarrow z) \ p \wedge (r
ightarrow z), p
ightarrow (q
ightarrow r),
eg(q
ightarrow s) dash_{ ext{CPL}} z \end{aligned}$$

$$\begin{array}{c} ?(p \rightarrow (q \rightarrow r), \neg (q \rightarrow s) \vdash z) \\ \vdots \\ ?(\neg p, q, \neg s \vdash z \ ; \ \neg q, q, \neg s \vdash z \ ; \ r, q, \neg s \vdash z \) \end{array}$$

$$\begin{split} H &= p \land (r \to z) \\ p \land (r \to z), p \to (q \to r), \neg (q \to s) \vdash_{\mathsf{CPL}} z \\ p \land (r \to z), p \to (q \to r), \neg (q \to s) \nvDash_{\mathsf{CPL}} \bot \\ \end{split}$$
 consistency

$$\begin{array}{c} ?(p \rightarrow (q \rightarrow r), \neg (q \rightarrow s) \vdash z) \\ \vdots \\ ?(\neg p, q, \neg s \vdash z \ ; \ \neg q, q, \neg s \vdash z \ ; \ r, q, \neg s \vdash z \) \end{array}$$

$$\begin{split} H &= p \land (r \to z) \\ p \land (r \to z), p \to (q \to r), \neg (q \to s) \vdash_{\mathsf{CPL}} z \\ p \land (r \to z), p \to (q \to r), \neg (q \to s) \nvDash_{\mathsf{CPL}} \bot & \text{consistency} \\ p \land (r \to z) \nvDash_{\mathsf{CPL}} z & \text{significance} \end{split}$$

Using s-transformations, Hintikka and dual Hintikka sets find consistent and significant abductive hypotheses for the following problems:

1
$$?(\neg(\neg p \land q) \vdash \neg \neg \neg q)$$

2 $?(p \lor q \vdash (q \rightarrow r) \rightarrow r)$
3 $?(p \rightarrow q, q \rightarrow p, \neg(p \land r) \vdash \neg q)$
4 $?(p \lor q, q \rightarrow r \vdash r \lor \neg q)$
5 $?(p \rightarrow q, q \rightarrow r, r \rightarrow s \vdash s)$
6 $?(q \lor r, \neg q \vdash s)$
7 $?(p \rightarrow q, r \lor s \vdash p \rightarrow s)$
8 $?((p \lor q) \rightarrow r, s \rightarrow p, t \rightarrow q \vdash r)$

- Chlebowski, Sz., Leszczyńska-Jasion, D. [2015]. Dual Erotetic Calculi and the Minimal LFI. Studia Logica, 103(6):1245–1278.
- [2] Fitting, M. [2012]. First-order logic and automated theorem proving. Springer.
- [3] Hutton, G. [2007] Programming in Haskell. Cambridge University Press.
- [4] Urbański, M. [2009]. Rozumowania abdukcyjne. Wydawnictwo Naukowe UAM, Poznań.
- [5] Wiśniewski, A. [2004]. Socratic proofs. Journal of Philosophical Logic, 33(3):299–326.
- [6] Wiśniewski, A. [2013]. Questions, Inferences, and Scenarios. Studies in Logic, vol: 46. Logic and Cognitive Systems. College Publications, London.

$$\frac{?(\Phi; \Theta, l, \Theta' \vdash \Theta''; \Psi)}{\overline{l}} \mathbf{R}^{1}_{abd}$$
$$\frac{?(\Phi; \Theta, l, \Theta' \vdash \Theta'', k, \Theta'''; \Psi)}{l \to k} \mathbf{R}^{2}_{abd}$$

$$\frac{?(\Phi ; \Theta, \chi \sim p, \Theta', \chi \circ p, \Theta'' \vdash \Theta''' ; \Psi)}{p} \mathsf{R}^{3^*}_{abd}$$

$$\frac{?(\Phi ; \Theta, p, \Theta', \chi \circ p, \Theta'' \vdash \Theta''' ; \Psi)}{\sim p} \mathsf{R}^{4^*}_{abd}$$

$$\frac{?(\Phi \ ; \ \Theta, \chi \sim p, \Theta', p, \Theta'' \vdash \Theta''' \ ; \ \Psi)}{\circ p} \ \mathbf{R}_{abd}^{5^*}$$

$$\frac{?(\Phi ; \Theta, I, \Theta' \vdash \Theta'' ; \Psi)}{\overline{I}} \mathbf{R}^{1}_{abd}$$
$$\frac{?(\Phi ; \Theta, I, \Theta' \vdash \Theta'', k, \Theta''' ; \Psi)}{I \to k} \mathbf{R}^{2}_{abd}$$

$$\frac{?(\Phi ; x_1 R \cdots R x_n, \Theta, x_n : I, \Theta' \vdash \Theta'' ; \Psi)}{\Box_{n-1} \overline{I}} \mathbf{R}^{1m}_{abd}$$

$$\frac{?(\Phi ; x_1 R \cdots R x_n, \Theta, x_i : I, \Theta' \vdash \Theta'', x_n : k, \Theta''' ; \Psi)}{\Box_{i-1}(I \to \Box_{n-i}k)} \mathbf{R}^{2m}_{abd}$$